罗素悖论如何解决
1、他生命力极强——一生遇到不少意外,75岁时乘飞机失事坠入海中,穿着沉重的大衣奋力游泳,后被救起,他活了98岁。
2、一个关于数字的无限聚集,比如自然数N=5……应该也是一个集合。(罗素悖论如何解决)。
3、如果这个集合包含自身(A∈A),那么,因为A是不包含自身的集合组成的集合,即A∈{x∉x},那么A应该不包含自身,也就是说A∉A;
4、这些令人头疼的悖论就是赢了第三次数学危机的罗素悖论。十九世纪下半叶,德国数学家康托尔创立了著名的集合论,集合论迅速称为当今数学体系的地基。而罗素悖论却动摇了集合论的基础。(罗素悖论如何解决)。
5、如果把所有的集合分成两类:一类不以本身为元素,另外一类以本身为元素。设第一类集合的并集为R,若R属于R,那么根据之前的定义,R必须不能是R的元素;同样地,若R不属于R,那么根据定义,R必须是R的元素。由此构成悖论。
6、现在问题就来了,乔治表演完毕后,究竟有没有资格留下来参加宴会呢?如果他可以留下来参加,那么就违背了宴会的招待原则,因为宴会只招待那些“没资格在自己表演后留下来参加宴会的小丑”;而如果他被大家赶走,不能参加宴会,那么他就是典型的“没资格在自己表演后留下来参加宴会的小丑”了,他就符合参加宴会的标准,应当留下来了。那么,他到底该不该留下来?
7、为了解决这个悖论,罗素认为,我们必须重新考虑集合的定义,把“集合”和“集合的集合”分开看待。如果我们把各种集合按照类型重新排列:第一类是单一元素组成的集合,第二类是以一类集合为元素的集合,第三类是以二类集合为元素的集合……以此类推,我们不能把隶属不同类的元素混为一谈,在同一类型的集合中的各种运算才有意义。
8、但是现在有一个无限长的巴士拉了可数的无限多位客人来订房间。关键是可数无限个新客人,意思就是你可以对这些客人编号。你让1号房间的客人搬到了2号房间。然后让2号房间的客人搬到了4号房间,3号房间的客人搬到6号房间,以此类推。让每一个原先入住的客人从"n"号房间搬到了"2n"号房间,于是只有无限多的偶数号房间里住了人,而空闲下来的无限多个奇数房间由新来的客人入住。
9、在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。
10、 上帝能造出一个重到他自己也举不起的东西吗?如果他能,那么他不能举起这个东西,就证明他力量方面不是全能的。如果他不能,那么不能创造出这样一个东西,就证明他在创造方面不是全能的。
11、这个悖论,以及产生自“自含集合”(setsthatcontainthemselvesasmembers),和产生自巨大的、不充分定义的“所有事物”之集合的其他难题,使得我们必须重新审视“集合”这个概念:它要更加正式,并且基于公理。
12、如果以上你都看明白了,那么下面就进入问题的核心,“罗素集合”算是“罗素集合”的成员吗?
13、理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。当然这位理发师可以说自己除外,但是集合论可没有那么宽容。
14、不可判定命题,尽管有些让人不舒服,但不足以构成一个悖论,从而完全毁掉一个逻辑系统。
15、 某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?
16、有人曾经让罗素证明从“2+2=5”推出“罗素是教皇”。罗素证明
17、理发师悖论可以表达成集合论的形式,就是罗素悖论。R={x|x不属于x},然后现在问R是否属于R。如果R不属于R,那么根据定义,R属于R;如果R属于R,那么根据定义,R不属于R。
18、谁是弗雷格呢?弗雷格全名弗里德里希·路德维希·戈特洛布·弗雷格,是德国数学家、数理逻辑学家、哲学家。弗雷格于1869年进入耶拿大学学习,后来转到哥廷根大学,终取得数学哲学博士学位。在1875年他又回到了耶拿大学任讲师,四年之后(1879)为助理教授,此后熬了17年,直到1896年才成为教授。弗雷格有生之年在德国学术圈可以说是不温不火,只有一名注册学生,但是这个学生很著名。他就是逻辑经验主义的代表人物卡尔纳普。弗雷格众生致力于为数学建立严格的数理逻辑基础,他的《算数基础:数概念的逻辑数学研究》(GrundlagederArithmetik.Einelogisch-mathematischeUntersuchungüberdenBegriffderZahl.)尝试从逻辑出发严格定义自然数(0、n+1),从而为代数学建立逻辑基础。
19、小丑乔治承诺要在周一至周五来一场让大家难以预料的“突如其来”的爆炸。虽然小丑们用严密的逻辑推理出突如其来的爆炸并不存在,但乔治还是做到了。这是怎么回事呢?
20、“所有自含集合的集合,是否包括其自身?”(whetherornotthesetofself-containingsetscontainsitself),这个问题可以就位于我们系统的范畴之外(即,我们可以不去考虑这个问题,因为不可判定)。
21、布尔巴基学派原来设想把数学结构的研究, 从一个分支转移到另一个分支, 直至数学的一些很僻远的领域之中。今天看来, 这个学派已很难实现他们的全部计划。
22、亚里士多德指出这个论证和前面的二分法是一回事,这个论证得到的结论是:跑得慢的人不可能被赶上。
23、作者:AndyKiersz(seniorquantreporteratBusinessInsider,曾在芝加哥大学和普渡大学研究数学)
24、于是,囚徒心想,让我完全出乎意料是吗?那他们总不能在第七天执行。因为第七天是后一天,如果我直到第六天都活得好好的,那么我将确切知道行刑日将是后一天,这与“我猜不到具体日期,完全出乎意料”就相矛盾了。那么第六天就变成了可能行刑的后一天。但若在第五天没有行刑,刽子手就只剩下第六天这一个选择,囚徒又将确切知道自己将死于第六天,这又与“猜不到具体日期,完全出乎意料”相矛盾。于是第六天也被排除。以此类推,第四……每一天都能被排除。囚徒心想,法官所说的难以预料的行刑日根本是不存在的,看来自己能顺利活下去了。然而,星期二中午,囚徒被押往刑场——这个结果对他来说出乎意料。
25、 回答:当时间旅行者改变了过去的某事的瞬间,那么平行宇宙就会被切开,这个可以由量子力学来解释。
26、 当一个无法阻挡的力量,碰到了一个无法移动的物体?如果这个力量移动了物体,那么这个物体就不是无法移动的。如果这个力量没有移动物体,那么这个无法阻挡的力量就被挡了下来。
27、罗素在1901年就自己发现了这个悖论,并且为找不到解决方案而感到苦恼。而弗雷格恰好是在1902年出版他的《算数的基本规律》的第二版,罗素就在1902年的6月16日写信给弗雷格,阐述了这一悖论。弗雷格读后简直五雷轰顶,但因为已经要交付出版,没有充足时间思考这个悖论的解,只能不无遗憾地写到:“一个科学家的工作完成之日,也是这一建筑物的基础倒塌之时,没有什么比这更糟糕了,当本书即将付梓之时,罗素先生的一封信把我置于这样的境地。”
28、尤其,这些公理立即禁止“一个集合成为其自身的一个成员”(即,自含集合)。
29、因此,我们有理由也会有一个“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。
30、(换言之,上文提到的同时包括非自然数、披萨和加利福尼亚州的大而不当的集合,应该被构建为诸多下属集合:非自然数集合,披萨集合,美国诸州集合;而这些下属集合,又从属于其他更大的集合,比如数字集合,食物集合,各国州省集合。)
31、罗素悖论由英国哲学家罗素针对集合论所提出来的一条逻辑悖论,描述为:某些集合是以自身做为元素的,例如所有概念的集合F,其集合自身F也是一个概念,所以该集合F是自身中的一个元素;某些集合是不以自身做为元素的,例如所有苹果的集合G,其集合自身不是苹果,所以该集合G不是自身中的一个元素。由此可知,任何一个集合,要么就是属于自身的,要么就是不属于自身的。现构造出一个集合R,R以所有自身不属于自身的集合作为元素,问:R是属于自身的?还是不属于自身的?如果R是属于自身的,则根据R的定义,R不能做为R中的元素,所以R是不属于自身的;而如果R是不属于自身的,则根据R的定义,R一定是R中的元素,则R是属于自身的,由此构成悖论。
32、关于罗素悖论的解决办法有ZF和NBG公理体系等,具体不在这多说。罗素悖论对数学体系的影响是深厚的,导致了对数学基础的研究,进一步地影响了数学的发展。
33、理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。
34、当然,罗素在数学上叫人记住的,不是他的深奥理论,而是他发现了集合论的矛盾,现在也叫做罗素悖论。这个悖论甚至引发了第三次数学危机,可见其影响程度之深。
35、罗素悖论之所以在当时的数学界与逻辑界内引起了极大震动,是因为它说明现代数学的基础——集合论——是有漏洞的,这样岂不是一切建立于集合论的数学证明都站不住脚了?可以说罗素悖论的出现,让“数学”这座大楼的地基被动摇了,也难怪会引发数学界的一场重大危机。
36、很自然,本身作为一个集合,“所有集合的集合”必须包括其自身,作为一个元素。
37、我们经常始于某个直觉概念——关于某物是如何运作的——而后我们发现在自己的直觉中,存在某些奇怪和自相矛盾的东西,随后我们会想办法处理这种奇异性,并解决难题。
38、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。
39、 一个人回到了过去,在他祖母能遇到祖父之前就杀了他的祖父。这就意味着这个人的父母之中有一个不会出生;依次这个人自己也不会出生;这就意味着他没有机会进行时光旅游挥刀过去;这就意味着他的祖父依然还活着;这就意味着这个人能构思回到过去,并杀了自己的祖父。
40、同济大学数学系.高等数学.上海:高等教育出版社,2012(Citation)
41、在谈罗素悖论之前,我们需要先提到另一个数学家——康托尔。在《这群酒店客人中出了幽灵》的猫粮里,我们讲到了这位伟大数学家的学术成就。
42、 回答:如果埃庇米尼得斯知道至少一个克里岛人(除了他以外)不说谎,那么他的诗就是一个谎言(因为他坚称所有克里岛人说谎),即使这首诗的作者是一个说谎者的事实也是真的。
43、(2)如果A不包括其自身,也没问题。如果A不包括其自身,A当然不会满足“成为A的一个成员”的条件。
44、(2)如果B不包括其自身,它将满足条件,成为它自己的成员之一;所以,B将必须包括其自身!
45、2)有限集的性质不能推广到无限,反之亦然;
46、亚里士多德批评芝诺在这里犯了错误:“他主张一个事物不可能在有限的时间里通过无限的事物,或者分别地和无限的事物相接触,须知长度和时间被说成是“无限的”有两种涵义。
47、罗素悖论,及其在“现代公理化集合论”(modernaxiomaticsettheory)中的解决,展现了我们对于数学的理解,如何随着时间而进化和精细化。
48、我们通常希望:任给一个性质,满足该性质的所有类可以组成一个类。但这样的企图将导致悖论:
49、“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”
50、“披萨”这个词也不是自然数,所以它是集合成员。
51、看其结论附加,2=“教皇和罗素是1 个人”,并不能推出“罗素就是教皇”,而是推出“教
52、十九世纪俄国年轻数学家H.N. 罗巴切夫斯基Lobatchevsky (1793 — 1856) 认真分析了前人的经验与教训, 大胆地提出一个新观念: 可能会存在第五公设不能成立的新几何系统。在这种思想的指导下, 他一举而创立了罗巴切夫斯基几何学, 简称罗氏几何学, 又称为双曲几何学。
53、这个“悖论”的问题就出在这里了:“不给自己刮脸的人”的界定标准是什么?
54、(1)“不是自然数的所有东西的集合”(注:这个巨大的集合包括“披萨”、“加利福尼亚州”,同时,也包括其自身,因为此集合当然也不是自然数);
55、但当我们考虑A的相反项——“所有‘不’自含集合的集合”(thesetofallsetsthatdonotcontainthemselvesaselements)——悖论就出现了。
56、同时,我们对于下述建构也要谨慎得多,比如“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。
57、 有一堆000,000颗沙粒组成的沙堆。如果我们拿走一颗沙粒,那么还是有一堆;如果我们再拿走一颗沙粒,那么还是一堆。如果我们就这样一次拿走一颗沙粒,那么当我们们取得只剩下一颗沙粒,那么它还是一堆吗?
58、从单纯的逻辑上来讲,荒谬的假设可以推论出任何荒谬的结论,哪怕推理过程无懈可击。
59、那么,具体到罗素悖论,如何分析和解决呢?很简单,R是数学家发明构造的,数学家给出的规则对于“R是否属于R”给出了一个矛盾式的规则,相当于没有定义。没有定义起码有三种可能性:缺少定义,重言定义,矛盾定义。
60、这个悖论有趣的地方在于,即使囚徒用无懈可击的逻辑推理出了“出乎意料的行刑日”并不存在,但是如果在周二或者别的什么日子被押向刑场,他依然会感到意外,因为他在那天早上依然不知道今天自己会被处死。事实上,当囚徒用严密的逻辑推理出自己不会被绞死时,也就意味着无论哪一天被绞死,他都是意外的。关于这个悖论,哲学家迈克尔·斯克里文曾写道:“逻辑的力量遭到事实的否决,我觉得这正是这个悖论的迷人之处。可怜的逻辑学家念着过去屡试不爽的咒语,但是事实这个怪兽听不懂咒语,执意前行。”
61、假设:有一个人,他有一种奇怪的色盲症。他看到的两种颜色和别人不一样,他把蓝色看成绿色,把绿色看成蓝色。
62、上文,我们已经将平面中的一条线段,考虑为一个集合。
63、发明“集合论”(settheory)的人同样如此,他们从一个相当模糊的“集合”概念出发,而这种模糊导致了一些严重问题。
64、周杰伦有首歌叫《乔克叔叔》,唱出了小丑这个职业的悲凉: