心情日志网 > 个性资讯 >

动作电位【文案69句】

来源:个性网名 发布时间:2023-04-02 15:45 | 编辑:个性资讯 | 热度:59

动作电位

1、静息电位的形成是非门控K+通道开放(事实上该通道一直开放),细胞膜对K+的通透性远大于Na+通透性而导致的(约50倍至100倍)。因为细胞膜内外的离子分布状况为:膜内有较多的K+和有机阴离子,膜外有较多的Na+和Cl-。所以静息时的离子移动主要表现为膜内K+顺浓度差往外扩散,相应的阴离子不能通过细胞膜,在膜两侧形成电位差。该电位差阻止了K+进一步的外流,进而达到浓度差与电位差对离子移动作用力相等的平衡状态。此时形成的外正内负的电位分布即静息电位,接近于K+的平衡电位,但一定程度上受Na+内流的影响而略为偏低。(动作电位)。

2、树突与轴突不仅形态上不同,分子特性也不同。膜上离子通道的种类,数量不同,解释了不同类型神经元的电学特性。

3、   Na+通道有2种门控状态:激活态和失活态(图2)。

4、人们假设,当内部去极化,也就是电压上升超过阈值后,Na+电导升高,Na+迅速流入,快速产生动作电位;当需要静息时,K+电导升高,K+迅速流出,快速恢复静息电位。

5、科学家发现,动作电位的下降相,仅仅通过对Na+电导的下降是不够的,还有短暂的对K+电导的提高,来加速K+出去细胞进而降低膜内电压。于是他们假设除了钠离子通道,还有一种钾离子通道,在去极化1ms后打开。由于其延迟,以及恢复静息的功能,科学家称其为,延迟整流器(delayedrectifier)。

6、细胞膜的渗透性和离子移动的显著变化导致动作电位的发生

7、静息电位接近于K+的平衡电位,主要受膜内外的K+浓度差影响。动作电位接近于Na+平衡电位,主要受膜内外的Na+浓度差影响。将离体神经置于较低Na+浓度的溶液中,该神经所能产生的动作电位幅度降低,静息电位幅度变化不大,兴奋性降低。兴奋性降低的原因是细胞内外Na+浓度差减小,Na+内流速度降低,再生性地激活Na+通道难度增大。反之,适当降低细胞外液中K+浓度,则使静息电位值升高,而对动作电位影响不大,兴奋性降低。原因是膜内外K+浓度差增大,K+外流增多使静息电位值升高,去极化到阈电位的难度升高。

8、③有总和效应,多个阈下刺激可以在时间上(在同一部位连续给予多个刺激)或空间上(在相邻的部位给予多个刺激)可以叠加,如果总和后产生的去极化强度超过阈电位,则可诱发动作电位。

9、图我不会在电脑上画,这个是在网上搜的。你看看能不能看懂,不懂了可以问我。



10、    当细胞接受刺激信号(电信号或化学信号)超过一定阈值时,电位门Na+通道将介导细胞产生动作电位。细胞接受阖值刺激,Na+通道打开,引起Na+通透性大大增加,瞬间大量Na+流入细胞内,致使静息电位减小乃至消失,此即质膜的去极化(depolarization)过程。当细胞内Na+进一步增加达到Na+平衡电位,形成瞬间的内正外负的动作电位,称质膜的反极化,动作电位随即达到大值。只有达到一定的刺激阖,动作电位才会出现,这是一种全或无的正反馈阖值,在Na+大量进入细胞时,通透性也逐渐增加,随着动作电位出现,Na+通道从失活到关闭,电位门K+通道完全打开,K+流出细胞从而使质膜再度极化,以至于超过原来的静息电位,此时称超极化(superpolarization)。超极化时膜电位使K+通道关闭,膜电位又恢复至静息状态(图5-12)。

11、   ③K+通道门缓慢开放,导致了动作电位从峰值返回到静息状态水平。

12、   ②开放或激活状态(2个门都处于开放状态);

13、③没有不应期,可以叠加:包括时间总和及空间总和。

14、动作电位是可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。动作电位的主要成份是峰电位。

15、大于阈强度的刺激称为阈上刺激,小于阈强度的刺激称为阈下刺激。

16、动作电位产生后,Na+流入,K+流出,需要钠钾泵来恢复细胞内外原来的Na+,K+浓度。

17、⑤超极化电位:激活态和失活态的电压门控Na+通道都关闭,电压门控K+通道也逐渐开始关闭,但速度缓慢,会有稍微过量的K+外流使膜电位较静息状态时更负,形成一个超极化电位,即正后电位。细胞膜很快会恢复到静息状态,细胞膜时刻准备响应另一个新刺激。

18、   去极化达到阈电位时,膜对Na+的通透性突然显著增大,超过了K+通透性的600倍。此时,不管是处于开放还是处于关闭状态的通道都不再能开放。在去极化早期时相时,随着越来越多的Na+通道的开放,膜电位开始减小,当达到阈电位时,Na+通道开放的数量已经足以启动一个动作电位产生的正反馈进程,使余下的大量的Na+通道也相继开放。与K+的通透性相比,此时细胞膜对Na+的通透性占据了的优势,大量的Na+进入细胞内,膜内电位迅速由负变正,并接近Na+的平衡电位(约+60mV)。此时电位已达到+30mV,但并未真正达到Na+的平衡电位水平,这是由于此时Na+通道开始关闭进入失活态,Na+的通透性下降到静息状态水平。

19、电极放到细胞外,能测量动作电位产生时,离子流入流出细胞膜产生的电流。此时电极可以用盐溶液玻璃管,也能用纯金属电极。同上操作就能看到,首先下降的波表明有正离子流入细胞,上升波表明有正离子流出细胞,值得注意的是两种波幅度不同。如果把这样电压的变化连到扬声器中,能听到像爆米花一样的噗噗声。

20、动作电位定义:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。

21、介绍动作电位的特点动作电位的上下跳动额外内容:记录动作电位的方法单个动作电位的产生多个动作电位的产生光遗传学——用光控制神经活动名家访谈:光敏感通道蛋白的发现之路,byGeorgeNagel理论上的动作电位膜上电流、电导动作电位的输入与输出实际的动作电位电压门控钠离子通道钠离子通道的结构钠离子通道的功能特性额外内容:膜片钳方法毒素对钠离子通道的影响电压门钾离子通道二者组合动作电位的传导影响传导速度的因素额外内容:局部麻醉磷脂与跳跃传导额外内容:多发性硬化症,一种脱髓鞘疾病动作电位,树突,轴突额外内容:神经元不同的电气行为总结课后习题感想

22、有趣的是,轴突的大小和膜上电压门控通道的数量也影响轴突的兴奋性。较小的轴突需要更大的去极化才能达到动作电位阈值,并且对局部麻醉药的阻滞更敏感。

23、一个动作电位。(a)示波器显示的动作电位。(b)动作电位的各个部分。

24、动作电位:可兴奋组织或细胞受到阈刺激或阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。动作电位的主要成份是峰电位。

25、下降(fallingphase):0以下到静息电位

26、细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。

27、能使细胞产生动作电位的小刺激强度称为:阈强度(阈值)。(此处可考名词解释)

28、静息电位的形成是非门控K+通道开放(事实上该通道一直开放),细胞膜对K+的通透性远大于Na+通透性而导致的(约50倍至100倍)。因为细胞膜内外的离子分布状况为:膜内有较多的K+和有机阴离子,膜外有较多的Na+和Cl-。所以静息时的离子移动主要表现为膜内K+顺浓度差往外扩散,相应的阴离子不能通过细胞膜,在膜两侧形成电位差。该电位差阻止了K+进一步的外流,进而达到浓度差与电位差对离子移动作用力相等的平衡状态。此时形成的外正内负的电位分布即静息电位,接近于K+的平衡电位,但一定程度上受Na+内流的影响而略为偏低。

29、利多卡因这样的麻醉剂,能和钠离子通道结合,阻碍动作电位的产生。具体的来说,是和通道第IV区域,S6α螺旋结合。利多卡因不能从外面直接与通道结合,需要先进细胞里,等钠离子通道打开后才能与其结合。因此,兴奋的神经元能麻醉的快一些。

30、动作电位具有“全或无”的特性,因此动作电位不可能产生任何意义上的叠加或总和;

31、动作电位的传导为什么不能达到电流在金属导线中的传导速度

32、动作电位:Na+大量内流;局部电位:Na+少量内流。

33、动作电位是指细胞在静息电位的基础上接受有效刺激后产生的一个迅速的可向远处传播的膜电位波动。动作电位是细胞产生兴奋的标志。

34、为什么动作电位被称为“全有或全无”(all-or-none)?

35、答:因为有阈值,超过阈值后,Na+离子通道才会打开,才会形成动作电位

36、 复极化早期,即下降支的大部分时间内,钠通道处于失活状态,此时钠通道不可能再次被激活。 动作电位复极化后期和超极化期内,细胞处于相对不应期内,此时阈上刺激有可能引发动作电位。

37、在大多数感觉神经元,峰起始区位于感觉神经末梢(sensorynerveendings),由感觉刺激导致的去极化能在这里产生动作电位。

38、   根据K+通道的高度特异选择性及平衡电位接近-90mV的特点,K+通道的基本的作用,应是使兴奋的细胞受到抑制。K+通道对抗Na+和Ca2+通道的兴奋性活动,起着稳定静息电位的作用,使细胞保持非兴奋状态。尽管一些K+通道对静息电位起着决定性的作用,然而K+通道在可兴奋细胞中的电压依赖性和动力学特性,使它们还具有其他一些特殊的功能,例如调节复极化过程、修饰动作电位时程、控制冲动的发放频率、决定节律性脉冲发放的特性等。K+通道的这些特点使其在调节所有类型肌肉收缩的强度和频率中,在神经终末终止神经递质的释放中,以及在弱化突触连接强度的事件中,均发挥极为广泛和重要的作用。

39、   动作电位有两个显著特征:首先,它们是全或无的。在阈值处,电压门控钠离子通道完全打开。因此,每一次的去极化,要么形成一个完整的动作电位,要么就不形成动作电位。其次,动作电位总是孤立事件。它们并不能像分级电位那样两两相加或相互影响。因为细胞膜在产生了一个动作电位后,有一个短暂的不应期。在这段时间内,电压门控钠离子通道无法再次打开。

40、   随着动作电位恢复到它的静息状态,变化的膜电压使Na+通道完全关闭,此时,Na+通道的激活态门处于关闭,失活态门处于开放状态。这是一种有能力重新开放的构型状态,它时刻准备对到来的另一次新刺激产生反应。动作电位期间开放的电压门控K+通道门也已关闭,只有少量漏K+通道开放,充许少量K+从细胞内漏出。由于电压门控K+通道关闭的速度较缓慢,它持续增加了细胞膜对K+的渗透性,稍微过量的K+的外流使细胞内电位较静息状态时更负,形成一个超极化电位(图4g)。

41、两种办法,电极分别放到细胞内,细胞外两种。

42、   动作电位的形成完全是由于离子的被动扩散。然而,在每个动作电位结束时,细胞质内的钠离子含量比静息时略高,钾离子含量比静息时略低。连续不停工作的钠-钾泵将消除这一改变。这样,虽然动作电位的形成不需要主动运输,但在离子梯度的维持中,主动运输却不可缺少。

43、②阈电位:一个适宜的刺激使一些Na+通道的激活态门开故,此时Na+通道的两种状态的门都处于开放状态,Na+的浓度梯度(膜外高于膜内)和电压梯度(膜外为正,膜内为资)两种力都驱使Na+迅速向细胞内流动,引起膜两侧达到阈电位。

44、细胞膜在不同状态下对不同离子的通透性不同。

45、钾离子通道和钠离子通道相似,都是有4个肽链子单位环绕形成的孔,其蛋白质对电场敏感,可以在去极化后扭曲成能让K+通过的形状。

46、河豚毒素(TetrodotoxinTTX)是一种剧毒,来源于河豚的卵巢。它能和钠离子通道外侧的某个部位结合,选择性的堵住钠离子通道,进而使得动作电位无法产生。

47、在动物中,都有着相似的动作电位特点。比如从鱿鱼到人类都有动作电位共有的特点。

48、上冲(Overshoot)。由于Na+通道打开后,对Na+通透性大于K+的,因此膜电位更靠近Na+的平衡电压。

49、局部电位具有以下特征:① 不是“全或无”的;②电紧张扩布;③ 没有不应期,可以叠加:包括时间总和及空间总和。

50、需要注意,膜内电位必须超过阈值,才能产生动作电位(Actionpotentialsarecausedbydepolarizationofthemembranebeyondthreshold)。就像老式照相机,你轻轻按快门按钮是没用的,必须用力,直到听到按钮咔嗒的一声后,才会拍照。动作电位也是一样,膜内电压升高一点是没用的,必须超过阈值才能产生动作电位。

51、  离子通道有许多种,根据其选择性可分为Na+通道、K+通道、Ca+通道等。而根据其门控机制不同,又可分为非门控通道、化学门控通道、电压门控通道、机械门控通道等。静息电位与动作电位的产生主要与非门控通道与电压门控通道有关。非门控通道始终处于开放状态,离子可以随时进出细胞,不受外界信号的明显影响。而电压门控通道则因膜电位变化而开启和关闭。

52、   ①虽然是关闭的但有能力开放(激活态门关闭,失活态门开放);

53、左:钠离子通道选择筛的大小。中:部分带水的Na+大小。右:部分带水的K+大小

54、③动作电位的去极化阶段:阈电位后,由于正反馈过程使膜上大量激活态Na+电压门控通道相继开放,但电压门控K+通道保持关闭,Na+的通透性增大并占据优势,大量的Na+进入细胞内,膜内电位迅速由负变正并接近Na+的平衡电位,动作电位达到峰值,但要小于Na+的平衡电位。

55、   K+通道是迄今所知分布为广泛的、大的电压门控离子通道家族。脊椎动物至少有17个不同基因编码的、具有S1~S6不同形态的K+通道。从K+通道通过的离子一般有高的选择性,通透能力有较大差别,其中,K+>Rb+>NH4+>>Cs+>Li+,Na+,Ca2+。在正常生理情况下,Pk/PNa(K+和Na+通透率的比值)的通透比率大于而且Na+能阻断K+通道。在完全缺K+的情况下,一些K+通道可允许Na+通过,这种特性与Ca2+通道类似。Ca2+通道在完全缺Ca2+时,也能充许Na+电流和K+电流通过。

56、较小的轴突在较大的轴突之前就会受到局部麻醉药的影响,因为它们的动作电位的安全裕度(safetymargin)较小。更多的电压门控钠通道才能动作电位在传导到轴突时不会消失。小轴突对局麻药敏感性的增加在临床实践中是偶然的。正如我们将在第12章中发现的,正是较小的纤维传递了关于疼痛刺激(如牙痛)的信息。

57、(教材拓展)黑光灯诱捕法调查昆虫种群密度的几点释疑

58、运气好,膜上就只有一个通道。当电压从-65mV上升到阈值Vm后,能检测到电流流入(e)。通道保持开放的时间可能不同,但电导值保持不变。

59、以上讨论的传导一般只发生在轴突上,树突、细胞体上则不会发生这种传导。因为这种传导需要钠离子通道,而树突、细胞体上很少有这种通道。一般轴丘,会被称为峰起始区(spike-initiationzone)。

60、动作电位是阈下刺激引起;而局部电位是阈刺激或阈上刺激引起。

61、通道损坏,会导致一些疾病,称为(channelopathy)。有一种遗传病,伴有发热性惊厥的全身性癫痫(generalizedepilepsywithfebrileseizures)。其癫痫发作是由大脑中爆炸性的、高度同步的电活动引起的。一般是3个月到5岁的婴儿,发烧后产生癫痫。表现为细胞膜外钠离子通道蛋白单氨基酸突变,突变的影响包括减缓钠通道的失活,延长动作电位持续时间

62、(动作电位主要包括峰电位和后电位两部分。锋电位由快速去极化的升支和快速复极化的降支组成,是动作电位的主要部分;后电位是锋电位之后膜电位的低幅、缓慢波动,包括后去极化电位和后超级化电位。)

63、   离体神经纤维在两端同时受到刺激,产生两个神经冲动传导至中点并相遇后会抵消或停止传导,这与电压门控Na+通道特性有关。前文提到动作电位产生过程中电压门控Na+通道先是处于激活状态,激活后又迅速失活,这段时间内不可能再次产生动作电位,称为不应期。只有在复极化后期电压门控Na+通道恢复到备用状态后,才有可能再次接受刺激产生兴奋。当兴奋部位通过局部电流刺激相邻未兴奋部位产生动作电位时,原兴奋部位正处于不应期内,不能再对局部电流的刺激产生反应。待到原兴奋部位恢复正常后,则动作电位已经传导到足够远的区段,不能再通过局部电流刺激原兴奋部位了。从神经元两端向中间传导的两个动作电位,在传导到相遇点时,旁边的相邻部位恰恰都是刚刚兴奋过而正处于不应期的部位,因此传导就会停止。对于有髓纤维来说,这个问题还可以有另一种情况,那就是神经纤维两端兴奋点之间刚好有偶数个郎飞结,当兴奋同时传导至中间两个郎飞结时,这两点都处于反极化状态,电位差为0,不能产生局部电流,所以抵消了。

64、动作电位的形成完全是由于离子的被动扩散。然而, 在每个动作电位结束时,细胞质内的钠离子含量比静息时略高,钾离子含量比静息时略低。

65、动作电位中,哪个离子负责开始的向内电流,和后面的向外电流?

66、动作电位具有以下特征:① 具有“全或无”现象;②不衰减传播;③脉冲式发放

67、下冲(Undershoot)。由于更多钾离子通道打开,比静息时对K+通透性更大,电压更靠近K+平衡电位,直到这部分多出的钾离子通道关闭后,才恢复静息。

68、膜上电流与电导。钠钾离子泵没画出。(a)初始所有通道关闭,Vm=0。(b)K+通道打开,因为电导gk>0,K+净流出,形成电流Ik,直到膜电位=平衡电位。(c)Vm=平衡电位,即使电导>0,但是没有电场力,K+没有净流出。此时K+流入流出一样。

相关网名